3 research outputs found

    Exercising Symbolic Discrete Control for Designing Low-power Hardware Circuits: an Application to Clock-gating

    Get PDF
    We devise a tool-supported framework for achieving power-efficiency of hardware chips from high-level designs described using the popular hardware description language Verilog. We consider digital circuits as hierarchical compositions of sub-circuits, and achieve power-efficiency by switching-off the clock of each sub-circuit according to some clock-gating logic. We encode the computation of the latter as several small symbolic discrete controller synthesis problems, and use the resulting controllers to derive power-efficient versions from original circuit designs. We detail and illustrate our approach using a running example, and validate it experimentally by deriving a low-power version of an actual Reed-Solomon decoder
    corecore